Triple Difference

Modèle économétrique et interprétation

Florentine Oliveira 2025-04-08

1. DiD vs DDD

Setting DiD:

- deux groupes: l'un traité, l'autre non
- deux périodes: avant et après traitement

Estimateur DiD:

(Différence traités Avant/après) - (Différence contrôles avant/après)

1. DiD vs DDD

Setting DiD:

- deux groupes: l'un traité, l'autre non
- deux périodes: avant et après traitement

Pourquoi/quand introduire une troisième différence?

Estimateur DiD:

(Différence traités Avant/après) - (Différence contrôles avant/après)

1. DiD vs DDD

Setting DiD:

- deux groupes: l'un traité, l'autre non
- deux périodes: avant et après traitement

Estimateur DiD:

(Différence traités Avant/après) - (Différence contrôles avant/après)

Pourquoi/quand introduire une troisième différence?

- lorsque le groupe de contrôle n'est pas vraiment comparable
- les groupes sont touchés différemment par un même choc
- existence pre-trends

Modèle et estimateur

Setting DDD:

- ullet un groupe de traitement ($D_i=1$) et un groupe de contrôle ($D_i=0$)
- ullet deux périodes, avant (Post=0) et après traitement (Post=1)
- ullet deux groupes F (G=0) et G (G=1)

$$y_{igt} = eta_0 + eta_1 D_i + eta_2 G_g + eta_3 Post_t + eta_4 (D_i imes G_g) + eta_5 (G_g imes Post_t) + eta_6 (D_i imes Post_t) \ + eta_7 (D_i imes G_g imes Post_t) + arepsilon_{igt}$$

La DDD:

- introduit une troisième dimension d'hétérogénéité (ex. sexe, secteur, région) pour corriger les biais structurels possibles
- **Hypothèse d'identification**: l'outcome relatif du groupe F et du groupe G du groupe de traitement évolue de la même manière que l'outcome relatif du groupe F et du groupe G u groupe de contrôle, en l'absence de traitement. (NB: ≠ deux hypothèses de tendances parallèles)
- Effet DDD = (DiD dans le groupe F) (DiD dans le groupe G)
- agit comme un "placebo": si le traitement n'a pas d'effet, alors la différence entre les deux effets DiD doit être nulle

Interprétation

 eta_0 : moyenne de l'outcome dans le groupe de contrôle dans le groupe F

 eta_1 : différence traité et contrôle dans le groupe F, avant

 eta_2 : différence entre groupe F et groupe G, dans le groupe de contrôle, avant

 eta_3 : différence avant/après dans le groupe de contrôle du groupe F

 eta_4 : différence traité/contrôle dans le groupe G, avant

 eta_5 : différence avant/après dans le groupe G dans le groupe de contrôle

 eta_6 : effet du traitement dans le groupe F (DiD) (donc eta_6+eta_7 est l'effet du traitement dans le groupe G)

 eta_7 : effet causal du traitement qui mesure la différence de l'effet du traitement dans les deux groupes

Interprétation

$$egin{aligned} \mathbb{E}(Y|D_i = 0, G = 0, Post = 0) &= eta_0 \ \mathbb{E}(Y|D_i = 1, G = 0, Post = 0) &= eta_0 + eta_1 \ \mathbb{E}(Y|D_i = 0, G = 1, Post = 0) &= eta_0 + eta_2 \ \mathbb{E}(Y|D_i = 0, G = 0, Post = 1) &= eta_0 + eta_3 \ \mathbb{E}(Y|D_i = 1, G = 1, Post = 0) &= eta_0 + eta_1 + eta_2 + eta_4 \ \mathbb{E}(Y|D_i = 0, G = 1, Post = 1) &= eta_0 + eta_2 + eta_3 + eta_5 \ \mathbb{E}(Y|D_i = 1, G = 0, Post = 1) &= eta_0 + eta_1 + eta_3 + eta_6 \ \mathbb{E}(Y|D_i = 1, G = 1, Post = 1) &= eta_0 + eta_2 + eta_3 + eta_4 + eta_5 + eta_6 + eta_7 \end{aligned}$$